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Overview
(Link to the video series)

Convex relaxations of the AC power flow equations have attracted significant
interest in the power systems research community in recent years. The following
collection of video lectures provides a brief introduction to the mathematics of
AC power systems, continuous nonlinear optimization, and relaxations of the
power flow equations. The aim of the videos is to provide the high level ideas
of convex relaxations and their applications in power system optimization, and
could be used as a starting point for researchers who want to study, use or
develop new convex relaxations for use in their own research. The videos do
not aim to provide an in-depth tutorial about specific convex relaxations, but
rather focus on ideas that are common to all convex relaxations of the AC
optimal power flow problem.

The videos assume minimal prerequisite knowledge and are designed to be
accessible to a variety of disciplines (e.g. power system engineers, industrial
engineers and computer scientists). They are designed to be modular, such
that interested listeners can either watch the series as a whole, or choose only
the subset that matches their interest. The following sections provide a brief
overview of the topics and references covered in each video.

Preliminaries
(Link to the video)

This video provides the introduction to the video series. It begins with the mo-
tivation, goals, and scope of the series and then introduces some mathematical
foundations of power systems and optimization. [8, 13, 9]
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https://www.youtube.com/watch?v=gB43TmcoUpA&list=PLeuOzWTGxj2ZZ_XUutDwNFvNfSWwWCgR5
https://youtu.be/gB43TmcoUpA


AC Power Flow
(Link to the video)

This video introduces the basics of power networks, and presents a stylized
version of the AC Power Flow problem. This simple power flow model is used
to provide an intuition for power losses on lines and describe how power flows
in meshed networks with cycles.

AC Optimal Power Flow
(Link to the video)

Further extending the AC Power Flow problem, this video introduces the AC
Optimal Power Flow problem [3]. While these lectures focus on the economic
dispatch problem, where generator schedules are optimized to minimize gener-
ation cost while satisfying network constraints, the broad applicability of the
core AC power constraints to a wide variety of power system decision problems
is also discussed.

Computational Hardness and the Value of Convexity
(Link to the video)

It is commonly acknowledged that the AC Optimal Power Flow problem is
“hard”. This video provides a brief introduction to the concept of computa-
tional complexity [23], a theoretical field which provides a scientifically rigorous
definition of what “hard” means. The NP-hardness of AC Optimal Power Flow
[15, 1] is discussed and used to motivate the value of convexity in power system
optimization [17, 24].

Solution Methods for AC Optimal Power Flow
(Link to the video)

This video discusses a variety of traditional solution methods for the AC Optimal
Power Flow problem, including local optimization methods, global optimization
methods, and linear approximations [7, 12]. Additionally, the existence of local
optimal solutions in the AC Optimal Power Flow problem is briefly discussed
[2].

Convex Relaxations of Non-Linear Optimization Problems
(Link to the video)

This video introduces the concept of the feasible set of an optimization problem
[10, 19], as well as convex relaxations and convex restrictions of that feasible
set. Combining the true feasible set and a relaxation, the concept of comput-
ing optimality gaps and how relaxations can be used to prove infeasiblity are
discussed. The presentation concludes with a discussion of what a good convex
relaxation is and a review of different methods for strengthening relaxations.
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https://youtu.be/Yr1kbZxJ3Eo
https://youtu.be/_ILr-0MkRug
https://youtu.be/uvhZXuPCmk0
https://youtu.be/tZ4Gw-572Mw
https://youtu.be/5A1ih3Z5YbA


Convex Relaxations of AC Optimal Power Flow
(Link to the video)

Combining results from the previous videos, this video revisits the AC Opti-
mal Power Flow problem and illustrates how a simple convex relaxation [11]
can be developed for this non-convex problem. This is followed by a brief
overview of different relaxations [20] and a discussion of the challenges that
convex relaxations face in accurately representing power losses on lines and
power flow around cycles in a network [24]. Special cases when a convex relax-
ation also provides a feasible solution to AC Optimal Power Flow are discussed
[14, 17, 18, 21], as well as more challenging cases where simple convex relaxations
may fail [16, 6, 4, 25].

Tips for Using Convex Relaxations of AC Optimal Power
Flow
(Link to the video)

This final video concludes the series with a collection of best practices for using
and developing convex relaxations. The presentation covers several methods for
using convex relaxations as building blocks in more complex algorithms, and
presents some common caveats and situations where convex relaxations should
be used with caution. It also provides advice on how to test whether your convex
relaxation is better than existing relaxations.

Extra Materials

These extra lectures provide examples of how convex relaxations can be lever-
aged as a building block to develop novel power system analysis tools.

Optimization-Based Bound Tightening via Convex Relaxation
(Link to the video)

This lecture provides a brief overview of how convex relaxations can be used
for bound tightening in optimal power flow problems, as presented in [5]. The
presentation illustrates that bound tightening can greatly improve the optimal-
ity gaps of convex relaxations and that these tight bounds can provide valuable
insights into operational flexibility of a given power network, especially for a
fixed operating point.

Towards AC Optimal Power Flow with Robust Feasibility Guarantees
(Link to the video)

This lecture demonstrates how convex relaxations can be utilized to guarantee
robust constraint feasibility for a stochastic variant of the AC Optimal Power
Flow problem, as presented in [22]. The method uses convex relaxations to
provide conservative bounds on the impact of uncertainty. To avoid overly
conservative results, a combination of multiple convex relaxations and bound
tightening is utilized.
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https://youtu.be/ONJYq8uPOU4
https://youtu.be/yTbOK6i6_SY
https://youtu.be/63rE-kI4xAs
https://youtu.be/wpd2JItVibk
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